
Pipeline strategies to accelerate range query
processing on a multi-GPU environment

Ricardo J. Barrientos
Department of Computer Architecture, ArTeCS Group,

Complutense University of Madrid, Spain.
Email: ribarrie@ucm.es

Abstract—Nowadays, similarity search is becoming a field
of increasing interest because these kinds of methods can
be applied to different areas in computer science and
engineering, such as voice and image recognition, text
retrieval, and many others. However, when processing large
volumes of data, query response time can be quite high.
In this case, it is necessary to apply mechanisms in order
to significantly reduce the average query response time.
In this sense, the parallelization of the metric structures
processing is an interesting field of research. Currently,
most of the previous and current works developed in this
area are carried out considering classical distributed or
shared memory platforms. However, modern GPU/Multi-
GPU systems offer a very impressive cost/performance ratio
as compared to multiprocessor or multicomputer platforms
that are usually more expensive gaining in significance and
popularity within the scientific computing community. More
recently, GPUs have been proposed to evaluate similarity
queries for indexes that remains statically stored in GPU’s
memory. In this paper we propose two different pipelines
to accelerate the process of similarity queries in datasets
large enough not to fit in memory of the GPUs. The first
pipeline makes use of CPU-cores and GPUs in a hybrid
algorithm, and the second one is implemented into the GPU.
The results show that the best performance is achieved with
both pipelines at the same time.

Index Terms—Similarity search, range queries, metric
spaces, GPU, multi-GPU.

I. INTRODUCTION

Currently, the search of similar objects in a large
collection of stored objects in a metric database has
become a most interesting problem. This kind of search
can be found in different applications such as voice and
image recognition, bioinformatics, plagiarism detection
and many others. A typical query for these applications
is the range search which consists in obtaining all the
objects that are at some given distance from the consulted
object. Basically, similarity is modeled in many interest-
ing cases through metric spaces, and the search of similar
objects through range search or nearest neighbors.

A metric space (X, d) is a set X and a distance function
d : X2 → R, so that ∀x, y, z ∈ X fulfills the properties
of positiveness [d(x, y) ≥ 0, and d(x, y) = 0 iff x = y],
symmetry [d(x, y) = d(y, x)] and triangle inequality

[d(x, y)+d(y, z) ≥ (d(x, z)]. This concept of similariy is
associated to the concept of Metric space data structures,
which can be grouped into two classes [1]: clustering-
based (BST [2], GHT [3], M-Tree [4], GNAT [5], and
many others), and pivots-based methods (LAESA [6],
FQT and its variants [7], Spaghettis and its variants [8],
FQA [9], SSS-Index [10] and others).

On the other hand, the increasing size of databases
and the emergence of new data types create the need
to process large volumes of data, and as a consequence,
it makes necessary to develop new algorithms that deal
with this amount of data. In this context, the use of
parallel resources becomes essential. To address this
problem, typical solutions are based on distributed mem-
ory platforms (cluster of PCs), shared memory platforms
(multicore) or both (cluster of multicores).

In the current technological context, one of the most
promising alternatives for the acceleration of this op-
eration is the exploitation of its intrinsic parallelism
on Graphics Processing Units (GPUs). Range searches
exhibit different levels of parallelism: we can process in
parallel many queries, many distances from a given query
or even exploit the parallelism in the distance operation
itself. This feature matches well with the architecture of
the GPU and Multi-GPU systems. However, these ar-
chitectures have complex memory hierarchies and it has
been empirically shown that their efficient exploitation
is one of the key elements for the acceleration of many
applications.

Metric data structures are used to perform an efficient
filtering on the database and reduce the search space.
However, their use could introduce a complex and ir-
regular memory access pattern in the search algorithm,
making it very inefficient for the GPU memory system.
The cost of the additional data transfers introduced by
using the index can hide the benefits of keeping the
database objects smartly indexed.

In this paper we propose the development of two
efficient pipeline strategies. The first one coordinates the
CPU and the GPU, being able to hide most of the CPU-
GPU data transfer latency. The second one, combines the

process of the GPU with the transfers between CPU ang
GPU.

The remaining of the paper is as follows. Section II
gives some background on similarity search and metric-
space databases, and summarizes some previous related
work. In Section IV we describe our proposals to deal
with large databases on a multi-GPU platform. Section V
present the experimental results of our analysis, and
finally Section VI summarizes the main conclusions of
this work.

II. SIMILARITY SEARCH BACKGROUND AND
RELATED WORK

Searching similar objects from a database to a given
query object is a problem that has been widely studied in
recent years. The solutions are based on the use of a data
structure that acts as an index to speed up the processing
of queries. Similarity can be modeled as a metric space
as stated by the following definitions:

Metric Space [11]: A metric space (X, d) is com-
posed of an universe of valid objects X and a distance
function d : X × X → R+ defined among them. The
distance function determines the similarity between two
given objects and holds several properties such as strict
positiveness (d(x, y) > 0 and if d(x, y) = 0 then x = y),
symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). The finite subset U ⊂ X
with size n = |U|, is called the database and represents
the collection of objects of the search space. There are
two main queries of interest, kNN and range queries.

Range Query [1]: The goal is to retrieve all the
objects u ∈ U within a radius r of the query q (i.e.
(q, r)d = {u ∈ U/d(q, u) ≤ r}).

The k Nearest Neighbors (kNN): The goal is to
retrieve the set kNN(q) ⊆ U such that |kNN(q)| = k
and ∀u ∈ kNN(q), v ∈ U− kNN(q), d(q, u) ≤ d(q, v).

The solution of range queries are used as basis to
solve kNN queries, and because of this, the present
paper is focused on solving range queries. To avoid as
many distance computations as possible, many indexing
approaches have been proposed. We have focused on
the List of Clusters (LC) [12] index, since (1) it is one
of the most popular non-tree structures that are able to
prune the search space efficiently and (2) it holds its
index on dense matrices which are very convenient data
structures for mapping algorithms onto GPUs. We are not
affirming that this index is the most suitable for GPU,
but its properties make it a good candidates to become
it.

In [13], [14] the authors propose solutions for simi-
larity search using a GPU card. All these papers take
the initial assumption that the whole index fits on GPU
memory, with capacity of a few GiB. In this paper we

C3

C2
R

2

R
3

R1
C1

u

(a) Illustration of the LC with three
center: c1, c2 and c3.

q
3

c

q
1

q
2

(b) Cases of searching.

Fig. 1. List of Cluster (LC).

propose solutions to deal with large databases, which
is usually the real case, where the databases fits just
partially on the GPU memory.

In the following subsection we explain the construc-
tion of the LC index and is described how range queries
are solved using it.

A. List of Clusters (LC)

This index [15], [12] can be implemented dividing the
space in two different ways: taking a fixed radius for each
partition or using a fixed size. In this paper, to ensure
good load balance in a parallel platform, we consider
partitions with a fixed size of K elements, thus the radius
rc of a cluster with center c is the maximum distance
between c and its K-nearest neighbor.

The LC data structure is formed from a set of cen-
ters (objects). The construction procedure (illustrated
in Figure 1(a)) is roughly as follows. We (randomly)
chose an object c1 ∈ U which becomes the first center.
This center determines a cluster (c1, r1, I1) were I1
is the set kNNU(c1,K) of K-nearest neighbors of c1
in U and r1 is the distance between the center c1
and its K-nearest neighbor in U (r1 is called covering
radius). Next, we choose a second center c2 from the
set E1 = U − (I1 ∪ {c1}). This second center C2

determines a new cluster (c2, r2, I2) where I2 is the set
kNNE1(c2,K) of K-nearest neighbors of c2 in E1 and r2
is the distance between the center C2 and its K-nearest
neighbor in E1. Let E0 = U, the process continues in
the same way choosing each center cn (n > 2) from the
set En−1 = En−2−(In−1∪{cn−1}), till En−1 is empty.

Note that, a cluster created first during construction
has preference over the following ones when their corre-
sponding covering radius overlap. All the elements that
lie inside the cluster corresponding to the first center c1
are stored in it, despite that they may also lie inside the
subsequent clusters (Figure 1(a)). This fact is reflected
in the search procedure. Figure 1(b) illustrates all the

situations that may arise between a range query (q, r)
and a given cluster.

During the processing of a range query (q, r), the
idea is that if the first cluster is (c1, r1, I1), we evaluate
d(q, c1) and add c1 to the result set if d(q, c1) ≤ r.
Then, we scan exhaustively the objects in I1 only if the
range query (q, r) intersects the cluster with center c1 and
radius r1, i.e. only if d(q, c1) ≤ r1+r (q1 in Figure 1(b)).
Next, we continue with the remaining set of clusters
following the construction order. However, if a range
query (q, r) is totally contained in a cluster (ci, ri, Ii),
i.e. if d(q, ci) ≤ ri − r, we do not need to traverse the
remaining clusters, since the construction process of the
LC ensures that all the elements that are inside the query
(q, r) have been inserted in Ii or in a previous clusters
in the building order (q2 in Figure 1(b)). In [12], authors
analyzed different heuristics for selecting the centers, and
showed experimentally that the best strategy is to choose
the next center as the element that maximizes the sum of
distances to previous centers. This is the heuristic used
in our work.

III. GRAPHIC PROCESSING UNITS (GPU)

This section presents an overview of the architecture
used by NVIDIA’s GPUs [16] and the programming
model offered by their CUDA drivers, in order to expose
the challenges that compilers have to face to produce
efficient codes for these devices.

A GPU is a device that can be used as a high
performance coprocessor, suitable for accelerating data
parallel codes. The program running on the CPU (the
host) must explicitly manage data transfers from host
memory to device memory and vice versa, and can
control the execution of programs on the device.

Figure 2 gives an schematic view of the actual hard-
ware of modern NVIDIA’s GPU. Physically, GPU cores
(processors) are organized into several multiprocessors.
Each multiprocessor is composed of several scalar pro-
cessors that share a single instruction unit. The proces-
sors within a multiprocessor execute in lock-step, all
the same instruction each cycle, but on different data.
Each multiprocessor can maintain hundreds of threads
in execution. These threads are organized in sets, called
warps.1 Every cycle, the hardware scheduler of each
multiprocessor chooses the next warp to execute (i.e.,
no individual threads but warps are swapped in and
out), using fine grain simultaneous multithreading to hide
memory access latencies. This execution model is called
Single Instruction Multiple Thread (SIMT) by Nvidia.

Regarding the memory hierarchy, all multiprocessors
can access the same on-board DRAM memory (global

1Currently, there are 32 threads per warp

Registers Registers Registers

Memory
Device

 Unit

Instruction

Processor 1 Processor MProcessor 2

Constant
Cache

Texture
Cache

Multiprocessor 1

Multiprocessor 2

Multiprocessor N

Shared Memory

Fig. 2. The CUDA programming model is designed for compute. It
represents the GPU as a coprocessor that integrates several multipro-
cessors and a complex memory hierarchy.

memory in CUDA parlance) through a high bandwidth
bus. This global memory is banked, which allows the
hardware to coalesce several simultaneous memory ac-
cesses to adjacent positions into a single memory transac-
tion. In addition, each multiprocessor contains a smaller
SRAM memory. In more recent GPUs (starting from the
Fermi architecture [16]) this SRAM can be configured
as scratch pad (i.e., a software controlled memory) and
hardware controlled cache memory. The user can decide,
with certain restrictions, the amount of cache and scratch
pad needed. These newer GPUs also incorporate a L2
cache common to all multiprocessors. Finally, GPU mul-
tiprocessors can also access the global memory through a
special read-only two level hierarchy of so called texture
caches, that can be configured to capture 2D locality.

This model is exposed to the programmer by the
CUDA driver. It allows to control the execution of a
kernel on the device. A kernel consists of a sequential
piece of code that has to be executed by a large set
of threads on the GPU multiprocessors. Those threads
are grouped into warps. Threads within a warp are
simultaneously executed on the scalar processors of a
single multiprocessor in lock step. If the threads in a warp
execute different code paths, only those that follow the
same path can be executed simultaneously and a penalty
is incurred.

Warps are further organized into a grid of CUDA
Blocks: threads within a block are all executed in the
same multiprocessor, and are then able to cooperate
with each other by (1) efficiently sharing data through

the shared low latency local SRAM memory and by,
(2) synchronizing their execution via barriers. In con-
trast, threads from different blocks can be (potentially)
scheduled on different multiprocessors and thus they can
only coordinate their execution via accesses to the high
latency global memory. Within certain restrictions, the
programmer specifies how many blocks and how many
threads per block are assigned to the execution of a given
kernel. When a kernel is launched, threads are created by
hardware and dispatched to the GPU cores.

According to NVIDIA the most significant factor
affecting performance is the bandwidth usage. Although
the GPU takes advantage of multithreading to hide
memory access latencies, having hundreds of threads
simultaneously accessing the global memory introduces a
high pressure on the memory bus bandwidth. Therefore,
reducing global memory accesses, by using local shared
memory to exploit inter thread locality and data reuse,
largely improves kernel execution time. In addition,
improving memory access patterns is important to allow
coalescing of warp-wise memory accesses and to avoid
bank conflicts on shared memory accesses.

To summarize, we can draw some conclusions on the
challenges being faced when mapping code to this kind
of devices. First the programmer needs to partition the
code into host and GPU code. The parallel code pieces
for the GPU must be mapped onto the CUDA model of
blocks and threads. Here we have two different levels of
parallelism, independent threads that are assigned to dif-
ferent blocks and cooperating threads, that are assigned
to the same block forming warps. The latter should
exhibit SIMD parallelism to avoid warp divergences and
to minimize the number of non-coalesced memory ac-
cesses (threads in the same warp should access adjacent
memory addresses). In addition, to reduce bandwidth
requirements, data locality should be efficiently exploited
in the register file and the local shared memories. This
implies that the programmer should explicitly consider,
schedule and express data transfers between the different
memories available2, trying to reduce the accesses to the
global memory, and also take account the existence of
the new caches, which introduce an additional variable
that should be considered.

IV. STRATEGIES TO PROCESS SIMILARITY QUERIES

In this section we describe our proposed methods
to process range queries on a multi-GPU platform. All
the following strategies are designed assuming that the
database does not fit in device memory, i.e. just a subset
of the clusters can be loaded at a time.

2This programmer control is larger when using the SRAM mainly
as a software controlled memory, but hardware controlled cache must
also be taken into account during the mapping

In all the following strategies the kernels are launched
with one CUDA Block per query. Each CUDA Block
processes a different query, which has several advan-
tages, such as, to be able to synchronize the threads
that solve the same query, to exploit coarse-grained
parallelism solving a batch of queries in parallel, or to
exploit fine-grained parallelism solving a query with a
set of threads.

A. 1-Stage Strategy

The authors in [14], assuming that the whole dataset
fits into device memory, a multi-GPU strategy was
proposed, using the LC index, and called 1-Stage. It
widely outperformed sequential and multi-core versions.
We used the 1-Stage strategy as baseline, but in this
case we load in device memory just a percentage of the
clusters at a time. The aim of this strategy is to solve each
query in just one kernel in the GPU, avoiding to launch
consecutive kernels and copying data to communicate
them.

We used one CPU-thread per GPU, each one controls
a different GPU. The centers, covering radius and their
respective clusters are distributed among the GPUs (in a
circular manner), and because of this, each query must
be processed by all the GPUs.

The discard of clusters and searching on them is
performed inside the kernel, composed by two steps:
(1) each thread performs a distance evaluations between a
different center and the query (corresponding to the cur-
rent CUDA Block), and stores in shared memory a vari-
able indicating if the cluster is discarded; (2) according
to the variables in shared memory, all the non-discarded
clusters are distributed (in a circular manner) among the
threads, and each thread calculates the distance between
an element and the query in the same kernel.

Due to the memory restrictions of space in the GPU,
we load N centers and Q queries in device memory,
and we process them iteratively. In the first iteration we
process a batch of Q queries with N clusters, in the
second iteration we load the next N cluster and process
the same Q queries, and so on, until all clusters were
loaded. The same process is repeated with all the batches
of queries.

B. CPU-GPU Pipeline

To minimize the number of transfers to GPU and in
order to increase the degree of parallelism, we developed
a hybrid pipeline between CPU and GPU, where the
CPU helps to discard some elements to avoid them to be
transfered to the GPU. We used P CPU-threads, where
P is the quantity of CPU-cores of the machine, and from
those P the first G threads (G < P) manage a different
GPU.

KernelCopy HtoD

Copy HtoD

Copy HtoD

Kernel

KernelCopy HtoD

Copy HtoD

Copy HtoD

Kernel

Discarding in CPU

Index

CPU Threads

Barrier

Stream 1

Stream 2

Stream 1

Stream 2

Barrier

GPU 2

GPU 1

Copying IDs of
non−discarded clusters

Step 2Step 1 Step 3

Fig. 3. Scheme of the multi-pipeline strategy.

Considering that N is the allowed quantity of clusters
in device memory, and Q is the quantity of the current
batch query, the steps of the pipeline are as follows. (1) In
CPU, we try to discard N clusters of the LC just using the
center and covering radius of the clusters. For the latter
we distribute (circularly) the clusters among the threads,
and each thread discards its cluster if its covering radius
does not intersect with any of the Q queries. (2) We
load in GPU just the non-discarded clusters according
to the previous step, and we process the queries with
them. (3) The non-dicarded cluster are processed with
the GPUs. While the third step (with the first G threads)
is in execution, the first step (with the rest of the threads)
is in execution too, but attempting to discard the next N
clusters.

C. Exploiting CUDA Asynchronous Copies

cudaMemcpyAsync allows to perform transfers to
(and from) device memory while a kernel is in execution.
This is possible by using CUDA streams, where each
CUDA stream can contain a sequence of instructions.
Copies and kernels from different streams can be exe-
cuted at the same time.

We exploit the asynchronous copies starting from the
base non-pipelined implementation. If N is the quantity
of clusters allowed in device memory, then we create
two CUDA streams, and each stream is composed of the
following instructions: (1) to copy N/2 clusters to device
memory, and in the case of the LSC to copy one super-
cluster of N/2 clusters; (2) launch a kernel to process
the queries with the loaded clusters (or supercluster). We
create just two CUDA streams and no more, because this
quantity makes a good balance in running time between
copies and kernels, which effectively builds a two stage
transfer - kernel pipeline.

We always copy the clusters of the LC with just one
cudaMemcpyAsync because the elements of a cluster
are contiguous in the database; this is key to efficiently

exploit the huge bandwidth between CPU and GPU,
since short transfers cannot hide the initial latency.

D. Multi-pipeline Strategy

Our final proposal combined the two previous strate-
gies in one multi-pipeline strategy. We create P CPU
threads, one per CPU-core, leaving G threads in charge
of G GPUs (G < P) to build the pipeline described
in Section IV-B. Each GPU creates two CUDA streams
to build the pipeline described in Section IV-C between
copies and kernels. The Figure 3 shows a scheme of this
strategy, which is composed by three steps separated by
OpenMP barriers, the steps are as follows. (1) Discard of
superclusters with threads running on CPU-cores. (2) To
copy the ID of the non-discarded superclusteres to be
read by the threads in charge of GPUs. (3) Each GPU
create two CUDA streams, and each stream copy to de-
vice memory one cluster per cudaMemcpyAsync, and
after a cluster is loaded in device memory, immediately
is launched a kernel to search on it. The steps 1 and 3
are executed on the same time.

V. EXPERIMENTAL RESULTS

All our GPU experiments were carried out on two
NVIDIA Tesla M2070, and each one is shipped with
14 multiprocessors, 32 cores per multiprocessor, 48KB
of shared memory and 5GB of device memory. The host
CPU is a 2xIntel Quad-Xeon processor of 2.66GHz with
16 GB of RAM.

We have used as reference database the CoPhIR
(Content-based Photo Image Retrieval) dataset [17]. This
consists of metadata extracted from the Flickr photo shar-
ing system. It is a collection of 106 million images con-
taining for each image five MPEG-7 visual descriptors,
specifically Scalable Colour, Colour Structure, Colour
Layout, Edge Histogram, and Homogeneous Texture. For
the purposes of this paper, we just used the Colour
Structure MPEG-7 image feature, which represents a
64 dimensional vector for each image. We used the

Euclidean distance as a distance measure. As in previous
papers [18], [19], the radii used were those that retrieve
on average the 0.01%, 0.1% and 1% of the elements of
the database per query.

To our knowledge, there is not a public and real query
log for similarity search in images. But recently, a public
website was presented in [20]. It applies the MUFIN [21]
search engine for images of CoPhIR dataset and is used
by many users all around the world. From this website,
we got our query log, which represents the processed
queries by several days. We used 30,000 queries that
are represented by its Colour Structure MPEG-7 image
feature of dimension 64. We have made this query log
public [22].

The Figures 4(a), 4(b) and 4(c) presents the cumulative
running time of all the strategies described in Section IV
implemented with the LC index, solving the queries in
batches of Q = 28, 98, 154. The first column of the
figures stands for the 1-Stage strategy (Section IV-A),
where after loading N clusters a kernel is launched to
search on them (N is the number of clusters allowed
in device memory). The second column (1-Stage Pipe)
stands for the 1-Stage strategy, but using two CUDA
streams (Section IV-C), therefore after loading N/2
clusters in device memory we launch a kernel to search
on them. The third column (1-Stage Pipe CPU-GPU)
stands for the multi-pipeline strategy (Section IV-D)
which implements both pipelines.

In all our experiments we always set the cluster size
equal to 256, because it has been empirically proved a
good parameter. We set the clusters allowed in device
memory in N=32, and we just copy the results from
GPU when a batch query is completely processed. In
all the strategies, we copy a cluster of the LC with
one cudaMemcpy, or one cudaMemcpyAsync in the
columns labeled with Pipe. All the strategies that imple-
ment the asynchronous copies pipeline (Section IV-C),
use page-locked (pinned) memory to transfer data. This
memory allows copies to device memory in parallel with
kernel processing, and also decrease the time of the
copies. Therefore, to be fair we use pinned memory for
the transfers in all the strategies.

Each bar in the figures represents the running time
of the corresponding strategy. For example, in the first
bar of Figure 4(a), the running time of the 1-Stage
strategy, processing the queries in batches of Q=28 is
46.4 seconds, with Q=98 is 16.2 seconds, and with
Q=154 is 11.7 seconds. We process the queries in batches
of 28, 98 and 154, because these numbers are multiples
of 14, which is the number of multiprocessors in our
GPUs, and taking account that we are processing each
query with a different CUDA Block, and each CUDA
Block is completely processed in just one multiprocessor

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52

R
un

ni
ng

 T
im

e
(s

ec
.)

0.01 0.1 1

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

Q=28
Q=98

Q=154

(a) DB Size = 500,000

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

R
un

ni
ng

 T
im

e
(s

ec
.)

0.01 0.1 1

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

Q=28
Q=98

Q=154

(b) DB Size = 1,000,000

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

R
un

ni
ng

 T
im

e
(s

ec
.)

0.01 0.1 1

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

1−Stage

1−Stage Pipe

1−Stage Pipe CPU−GPU

Q=28
Q=98

Q=154

(c) DB Size = 1,700,000

Fig. 4. Running time of the LC index combined with the pipelines
described in Section IV.

(Section III), a multiple of 14 improves the load balance
of CUDA Blocks across multiprocessors. Note that, in
the worst case (if no discard is performed at the CPU
level), the complete database must be transferred from
the CPU to the GPU for every batch query: 195 times for
Q=154, 307 times for Q=98 and 1072 times for Q=28.
It is imperative to efficiently hide this latency to attain
good results.

Our baseline implementation, labeled as 1-Stage strat-
egy and described in section IV-A, achieves the worst
performance in all the databases for all Q. The 1-Stage
Pipe strategy outperforms the previous one, because it
reduces latency of the copies to device memory by using
the pipeline described in Section IV-C, implemented with
CUDA streams. The 1-Stage Pipe CPU-GPU strategy
outperforms the previous two, because the reduction in
the quantity of clusters copied to device memory. This
reduction is made by the threads running on CPU cores
that calculate the distances between the centers and the
batch query, avoiding to copy the discarded clusters.

The advantages of using both pipelines is more evident
with Q=28, because the larger Q, the less the discard
of clusters. This seems to indicate a certain degree of
locality in the query log, which is lost when the batch
is made too large. However, the much larger number of
transfers due to a reduce Q does mitigate the benefits of
this locality.

VI. CONCLUSIONS

In this paper we have presented two different pipelines
to accelerate similarity search on metric spaces using a
multi-GPU platform, and we have used the LC index
because its suitable features for the GPU.

The first pipeline is a hybrid CPU-GPU version of
the LC index, where the CPUs perform a first round
of discards for a batch query Qi while the GPUs are
finishing the processing of the previous batch Qi−1. The
second one is implemented into the GPUs using CUDA
streams and asynchronous copies, where the CPU-GPU
transfers and the GPU kernels are executed in parallel.
The transfer latency is almost completely hidden that
way; indeed, even if the complete list of clusters is copied
for each batch query, the total exposed latency may be
even lower than the experienced when transferring the
complete database just once.

We outperformed the baseline (1-Stage) strategy pro-
posed in a previous paper, where its performance outper-
formed sequential and multi-core versions.

Our study with a real query log for similarity search
in images, shows that there exits a locality amongst
queries: i.e. the sets of clusters accessed by two con-
secutive queries have a non null intersection. This moti-
vates further exploration to reduce transfers by carefully

scheduling queries.

REFERENCES

[1] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n,
“Searching in metric spaces,” in ACM Computing Surveys,
September 2001, pp. 33(3):273–321.

[2] I. Kalantari and G. McDonald, “A data structure and an algorithm
for the nearest point problem,” IEEE Transactions on Software
Engineering, vol. 9, no. 5, 1983.

[3] J. Uhlmann, “Satisfying general proximity/similarity queries
with metric trees,” in Information Processing Letters, 1991, pp.
40:175–179.

[4] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access
method for similarity search in metric spaces,” in VLDB’97,
Proceedings of 23rd International Conference on Very Large Data
Bases, August 25-29, 1997, Athens, Greece. Morgan Kaufmann,
1997, pp. 426–435.

[5] S. Brin, “Near neighbor search in large metric spaces,” in the
21st VLDB Conference. Morgan Kaufmann Publishers, 1995,
pp. 574–584.

[6] L. Micó, J. Oncina, and E. Vidal, “A new version of the nearest-
neighbor approximating and eliminating search (aesa) with linear
preprocessing-time and memory requirements,” Pattern Recogni-
tion Letters, vol. 15, pp. 9–17, 1994.

[7] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu, “Proximity
matching using fixedqueries trees.” in 5th Combinatorial Pattern
Matching (CPM’94), ser. LNCS 807, 1994, pp. 198–212.

[8] E. Chávez, J. Marroquı́n, and R. Baeza-Yates, “Spaghettis: An
array based algorithm for similarity queries in metric spaces,” in
6th International Symposium on String Processing and Informa-
tion Retrieval (SPIRE’99). Los Alamitos, USA: IEEE CS Press,
1999, pp. 38–46.

[9] E. Chávez, J. Marroquı́n, and G. Navarro, “Fixed queries array:
A fast and economical data structure for proximity searching,”
Multimedia Tools and Applications, vol. 14, no. 2, pp. 113–135,
2001.

[10] N. R. Brisaboa, A. Fariña, O. Pedreira, and N. Reyes, “Similarity
search using sparse pivots for efficient multimedia information
retrieval,” in ISM, 2006, pp. 881–888.

[11] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search:
The Metric Space Approach, ser. Advances in Database Systems.
Springer, 2006, vol. 32.

[12] E. Chávez and G. Navarro, “A compact space decomposition for
effective metric indexing,” Pattern Recognition Letters, vol. 26,
no. 9, pp. 1363–1376, 2005.

[13] R. Uribe-Paredes, E. Arias, J. L. Sánchez, D. Cazorla, and
P. Valero-Lara, “Improving the performance for the range search
on metric spaces using a multi-gpu platform,” in 23rd Interna-
tional Conference on Database and Expert Systems Applications
(DEXA 2012), ser. LNCS, vol. 7447. Springer, 2012, pp. 442–
449.

[14] R. Barrientos, J. Gómez, C. Tenllado, M. Prieto, and M. Marin,
“Range query processing in a multi-gpu environment,” in 10th
IEEE International Symposium on Parallel and Distributed Pro-
cessing with Applications (ISPA 2012), pp. 419–426.

[15] E. Chavéz and G. Navarro, “An effective clustering algorithm
to index high dimensional metric spaces,” in The 7th Interna-
tional Symposium on String Processing and Information Retrieval
(SPIRE’2000). IEEE CS Press, 2000, pp. 75–86.

[16] NVIDIA, “Nvidia’s next generation cuda compute architecture:
Fermi,” Tech. Rep., 2010.

[17] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego,
T. Piccioli, and F. Rabitti, “Cophir: a test collection for
content-based image retrieval,” CoRR, vol. abs/0905.4627, 2009.
[Online]. Available: http://cophir.isti.cnr.it

[18] V. Gil-Costa, R. J. Barrientos, M. Marin, and C. Bonacic,
“Scheduling metric-space queries processing on multi-core pro-
cessors,” in 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP 2010). Pisa, Italy: IEEE
Computer Society, February 2010, pp. 187–194.

[19] G. Navarro and R. Uribe-Paredes, “Fully dynamic metric access
methods based on hyperplane partitioning,” Information Systems,
vol. 36, no. 4, pp. 734 – 747, 2011.

[20] D. Novak, M. Batko, and P. Zezula, “Generic similarity search
engine demonstrated by an image retrieval application,” in 32nd
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. Boston, MA, USA: ACM, 2009, p. 840.

[21] P. Zezula, “Multi feature indexing network mufin for similarity
search applications,” in 38th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM
2012), ser. LNCS, vol. 7147. Springer, 2012, pp. 77–87.

[22] “Query log. http://kataix.umag.cl/∼ribarrie/Programs.html.”

